人工ニューラルネットワーク

じんこうにゅーらるねっとわーく(英:Artificial neural network)/ANN

ニューラルネットワーク(神経回路網、英: neural network、略称: NN)は、脳機能に見られるいくつかの特性を計算機上のシミュレーションによって表現することを目指した数学モデルである。研究の源流は生体の脳のモデル化であるが、神経科学の知見の改定などにより次第に脳モデルとは乖離が著しくなり、生物学や神経科学との区別のため、人工ニューラルネットワーク(artificial neural network、ANN)とも呼ばれる。

概要
ニューラルネットワークはシナプスの結合によりネットワークを形成した人工ニューロン(ノード)が、学習によってシナプスの結合強度を変化させ、問題解決能力を持つようなモデル全般を指す。狭義には誤差逆伝播法を用いた多層パーセプトロンを指す場合もあるが、これは誤った用法である。一般的なニューラルネットワークでの人工ニューロンは生体のニューロンの動作を極めて簡易化したものを利用する。

ニューラルネットワークは、教師信号(正解)の入力によって問題に最適化されていく教師あり学習と、教師信号を必要としない教師なし学習に分けられることがあるが、本質的には教師なし学習と教師あり学習は等価である。三層以上のニューラルネットワークは可微分で連続な任意関数を近似できることが証明されている。

画像や統計など多次元量のデータで線形分離不可能な問題に対して、比較的小さい計算量で良好な解を得られることが多い。 現在では、画像認識、市場における顧客データに基づく購入物の類推などとして応用されている(パターン認識、データマイニング)。


WiKipedia 2019/01/21 転載